# International Rectifier

#### **AUTOMOTIVE MOSFET**

# IRFZ44ZPbF IRFZ44ZSPbF IRFZ44ZLPbF

HEXFET® Power MOSFET

#### Features

- Advanced Process Technology
- Ultra Low On-Resistance
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax
- Lead-Free



Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.







**Absolute Maximum Ratings** 

|                                         | Parameter                                                         | Max.                   | Units |
|-----------------------------------------|-------------------------------------------------------------------|------------------------|-------|
| I <sub>D</sub> @ T <sub>C</sub> = 25°C  | Continuous Drain Current, V <sub>GS</sub> @ 10V (Silicon Limited) | 51                     | Α     |
| I <sub>D</sub> @ T <sub>C</sub> = 100°C | Continuous Drain Current, V <sub>GS</sub> @ 10V (See Fig. 9)      | 36                     |       |
| I <sub>DM</sub>                         | Pulsed Drain Current ①                                            | 200                    |       |
| P <sub>D</sub> @T <sub>C</sub> = 25°C   | Maximum Power Dissipation                                         | 80                     | W     |
|                                         | Linear Derating Factor                                            | 0.53                   | W/°C  |
| V <sub>GS</sub>                         | Gate-to-Source Voltage                                            | ± 20                   | V     |
| E <sub>AS</sub>                         | Single Pulse Avalanche Energy (Thermally Limited) ②               | 86                     | mJ    |
| E <sub>AS</sub> (tested)                | Single Pulse Avalanche Energy Tested Value ♡                      | 105                    |       |
| I <sub>AR</sub>                         | Avalanche Current ①                                               | See Fig.12a,12b,15,16  | А     |
| E <sub>AR</sub>                         | Repetitive Avalanche Energy ®                                     |                        | mJ    |
| $T_J$                                   | Operating Junction and                                            | -55 to + 175           | °C    |
| T <sub>STG</sub>                        | Storage Temperature Range                                         |                        |       |
|                                         | Soldering Temperature, for 10 seconds                             | 300 (1.6mm from case ) |       |
|                                         | Mounting torque, 6-32 or M3 screw                                 | 10 lbf•in (1.1N•m)     |       |

#### Thermal Resistance

| Thermal Resistance |                                                |      |      |       |  |  |
|--------------------|------------------------------------------------|------|------|-------|--|--|
|                    | Parameter                                      | Тур. | Max. | Units |  |  |
| $R_{\theta JC}$    | Junction-to-Case                               |      | 1.87 | °C/W  |  |  |
| R <sub>θCS</sub>   | Case-to-Sink, Flat, Greased Surface            | 0.50 |      |       |  |  |
| $R_{\theta JA}$    | Junction-to-Ambient                            |      | 62   |       |  |  |
| $R_{\theta JA}$    | Junction-to-Ambient (PCB Mount, steady state)® |      | 40   |       |  |  |

HEXFET® is a registered trademark of International Rectifier.

### Static @ T<sub>J</sub> = 25°C (unless otherwise specified)

|                                | Parameter                            | Min. | Тур.  | Max. | Units | Conditions                                        |
|--------------------------------|--------------------------------------|------|-------|------|-------|---------------------------------------------------|
| $V_{(BR)DSS}$                  | Drain-to-Source Breakdown Voltage    | 55   |       | _    | V     | $V_{GS} = 0V, I_D = 250\mu A$                     |
| $\Delta BV_{DSS}/\Delta T_{J}$ | Breakdown Voltage Temp. Coefficient  |      | 0.054 | _    | V/°C  | Reference to 25°C, I <sub>D</sub> = 1mA           |
| R <sub>DS(on)</sub>            | Static Drain-to-Source On-Resistance |      | 11.1  | 13.9 | mΩ    | V <sub>GS</sub> = 10V, I <sub>D</sub> = 31A ④     |
| $V_{GS(th)}$                   | Gate Threshold Voltage               | 2.0  |       | 4.0  | V     | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$              |
| gfs                            | Forward Transconductance             | 22   |       |      | S     | $V_{DS} = 25V, I_{D} = 31A$                       |
| I <sub>DSS</sub>               | Drain-to-Source Leakage Current      |      |       | 20   | μA    | $V_{DS} = 55V, V_{GS} = 0V$                       |
|                                |                                      |      |       | 250  |       | $V_{DS} = 55V, V_{GS} = 0V, T_{J} = 125^{\circ}C$ |
| I <sub>GSS</sub>               | Gate-to-Source Forward Leakage       |      |       | 200  | nA    | V <sub>GS</sub> = 20V                             |
|                                | Gate-to-Source Reverse Leakage       |      |       | -200 |       | V <sub>GS</sub> = -20V                            |
| $Q_g$                          | Total Gate Charge                    |      | 29    | 43   | nC    | I <sub>D</sub> = 31A                              |
| $Q_{gs}$                       | Gate-to-Source Charge                |      | 7.2   | 11   |       | $V_{DS} = 44V$                                    |
| $Q_{gd}$                       | Gate-to-Drain ("Miller") Charge      |      | 12    | 18   |       | V <sub>GS</sub> = 10V ⊕                           |
| t <sub>d(on)</sub>             | Turn-On Delay Time                   |      | 14    |      | ns    | $V_{DD} = 28V$                                    |
| t <sub>r</sub>                 | Rise Time                            |      | 68    | _    |       | $I_D = 31A$                                       |
| t <sub>d(off)</sub>            | Turn-Off Delay Time                  |      | 33    | _    |       | $R_G = 15\Omega$                                  |
| t <sub>f</sub>                 | Fall Time                            |      | 41    | _    |       | V <sub>GS</sub> = 10V ⊕                           |
| L <sub>D</sub>                 | Internal Drain Inductance            |      | 4.5   | _    | nΗ    | Between lead, p                                   |
|                                |                                      |      |       |      |       | 6mm (0.25in.)                                     |
| L <sub>S</sub>                 | Internal Source Inductance           |      | 7.5   | _    |       | from package ( )                                  |
|                                |                                      |      |       |      |       | and center of die contact                         |
| C <sub>iss</sub>               | Input Capacitance                    |      | 1420  | _    | pF    | $V_{GS} = 0V$                                     |
| Coss                           | Output Capacitance                   |      | 240   |      | Ì     | $V_{DS} = 25V$                                    |
| C <sub>rss</sub>               | Reverse Transfer Capacitance         |      | 130   |      | İ     | f = 1.0MHz, See Fig. 5                            |
| Coss                           | Output Capacitance                   |      | 830   |      | İ     | $V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$          |
| Coss                           | Output Capacitance                   |      | 190   |      | Ì     | $V_{GS} = 0V, V_{DS} = 44V, f = 1.0MHz$           |
| C <sub>oss</sub> eff.          | Effective Output Capacitance         |      | 300   |      | Ī     | $V_{GS} = 0V$ , $V_{DS} = 0V$ to 44V              |

#### **Diode Characteristics**

|                 | Parameter                 | Min.      | Тур.                                                                 | Max. | Units | Conditions                                        |
|-----------------|---------------------------|-----------|----------------------------------------------------------------------|------|-------|---------------------------------------------------|
| Is              | Continuous Source Current |           |                                                                      | 51   |       | MOSFET symbol                                     |
|                 | (Body Diode)              |           |                                                                      |      | Α     | showing the                                       |
| I <sub>SM</sub> | Pulsed Source Current     |           |                                                                      | 200  |       | integral reverse                                  |
|                 | (Body Diode) ①            |           |                                                                      |      |       | p-n junction diode.                               |
| $V_{SD}$        | Diode Forward Voltage     |           |                                                                      | 1.2  | V     | $T_J = 25^{\circ}C$ , $I_S = 31A$ , $V_{GS} = 0V$ |
| t <sub>rr</sub> | Reverse Recovery Time     |           | 23                                                                   | 35   | ns    | $T_J = 25$ °C, $I_F = 31$ A, $V_{DD} = 28$ V      |
| Q <sub>rr</sub> | Reverse Recovery Charge   |           | 17                                                                   | 26   | nC    | di/dt = 100A/µs ⊕                                 |
| t <sub>on</sub> | Forward Turn-On Time      | Intrinsio | Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) |      |       |                                                   |

#### Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- ② Limited by  $T_{Jmax}$ , starting  $T_J$  = 25°C, L =0.18mH,  $R_G$  = 25 $\Omega$ ,  $I_{AS}$  = 31A,  $V_{GS}$  =10V. Part not recommended for use above this value.
- $\label{eq:loss} \begin{array}{l} \mbox{ } 3 \mbox{ } I_{SD} \leq 31A, \mbox{ } di/dt \leq 840A/\mu s, \mbox{ } V_{DD} \leq V_{(BR)DSS}, \\ \mbox{ } T_{J} \leq 175^{\circ}C. \end{array}$
- ④ Pulse width  $\leq$  1.0ms; duty cycle  $\leq$  2%.
- $\ \ \, \ \, \ \,$   $\ \ \, \ \,$   $C_{oss}$  eff. is a fixed capacitance that gives the same charging time as  $C_{oss}$  while  $V_{DS}$  is rising from 0 to 80%  $V_{DSS}$  .
- $\ \, \ \, \ \,$  Limited by  $T_{Jmax}$  , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
- This value determined from sample failure population. 100% tested to this value in production.
- This is applied to D<sup>2</sup>Pak, when mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.
- $\mathfrak{D}$  R<sub> $\theta$ </sub> is rated at T<sub>J</sub> of approximately 90°C.

# IRFZ44Z/S/LPbF

## TO-220AB Package Outline

Dimensions are shown in millimeters (inches)



- 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
- 2 CONTROLLING DIMENSION: INCH
- 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
- 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.

## TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010

LOT CODE 1789

ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C"

Note: "P" in assembly line position indicates "Lead-Free"

